Kingdom in Peril

Middle School Next Generation Science Standards Alignment Document

WHAT STUDENTS DO: Explore the arrangement of Sun, Earth, and Earth’s Moon necessary to generate eclipses.

Students will assume the role of a 17th century monarch who must learn and understand eclipse phenomena to save the kingdom from revolt. Students will explore the arrangement of the Sun, Earth, Moon system, and inclination of the Moon’s orbit necessary to generate solar and lunar eclipse patterns experienced on Earth. They will explore the shadow zones and likelihood of observing these phenomena.

NRC FRAMEWORK/NGSS CORE & COMPONENT QUESTIONS

WHAT IS THE UNIVERSE AND WHAT IS EARTH’S PLACE IN IT?

NGSS Core Question: ESS1: Earth’s Place in the Universe

What are the predictable patterns caused by Earth’s movement in the solar system?

ESS1.B: Earth and the Solar System

INSTRUCTIONAL OBJECTIVES (IO)

Students will be able to

IO1: Explain predictable eclipse patterns using a model to discover and demonstrate the evidence of phenomena at different scales such as the Moon’s inclination (orbital plane) in combination with the position of the Sun, Earth, Moon system.
1.0 About This Activity

How Students Learn: Science in the Classroom (Donovan & Bransford, 2005) advocates the use of a research-based instructional model for improving students’ grasp of central science concepts. Based on conceptual-change theory in science education, the 5E Instructional Model (BSCS, 2006) includes five steps for teaching and learning: Engage, Explore, Explain, Elaborate, and Evaluate. The Engage stage is used like a traditional warm-up to pique student curiosity, interest, and other motivation-related behaviors and to assess students’ prior knowledge. The Explore step allows students to deepen their understanding and challenges existing preconceptions and misconceptions, offering alternative explanations that help them form new schemata. In Explain, students communicate what they have learned, illustrating initial conceptual change. The Elaborate phase gives students the opportunity to apply their newfound knowledge to novel situations and supports the reinforcement of new schemata or its transfer. Finally, the Evaluate stage serves as a time for students’ own formative assessment, as well as for educators’ diagnosis of areas of confusion and differentiation of further instruction. The 5E stages can be cyclical and iterative.
2.0 Instructional Objectives, Learning Outcomes, Standards, & Rubrics

Visit https://infiniscope.org/ for access to the digital learning experience, lesson plans, standards alignment documents, and additional resources.

Instructional objectives and learning outcomes are aligned with:

- Achieve Inc.’s, *Next Generation Science Standards (NGSS)*
- National Governors Association Center for Best Practices (NGA Center) and Council of Chief State School Officers (CCSSO)’s, *Common Core State Standards for English Language Arts & Literacy in History/Social Studies, Science, and Technical Subjects*

The following chart provides details on alignment among the core and component NGSS questions, instructional objectives, learning outcomes, and educational standards.

- Your **instructional objective (IO)** for this lesson align with the NRC Framework and NGSS.
- You will know that you have achieved these instructional objectives if students demonstrate the related **learning outcomes (LO)**, also aligned with the NRC Framework and NGSS.
- You will know the level to which your students have achieved the learning outcomes by using the suggested **rubrics**.

Important Note: This lesson is color-coded to help teachers identify each of the three dimensions of NGSS. The following identifying colors are used: **Practices are blue**, **Cross-Cutting Concepts are green**, and **Disciplinary Core Ideas are orange**.

This color-coding is consistent with the NGSS Performance Expectations and Foundation Boxes.

Quick View of Standards Alignment:

This alignment document provides full details of the way in which instructional objectives, learning outcomes, 5E activity procedures, and rubric assessments were derived through, and align with the Next Generation Science Standards (NGSS). For convenience, a quick view follows:
WHAT IS THE UNIVERSE AND WHAT IS EARTH’S PLACE IN IT?

NGSS Core Question: ESS1: Earth’s Place in the Universe

What are the predictable patterns caused by Earth’s movement in the solar system?

ESS1.B: Earth and the Solar System

<table>
<thead>
<tr>
<th>Instructional Objective</th>
<th>Learning Outcomes</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be able to</td>
<td>Students will demonstrate the measurable abilities</td>
<td>Students will address</td>
</tr>
</tbody>
</table>

IO1: Explain predictable eclipse patterns using a model to discover and demonstrate the evidence of phenomena at different scales such as the Moon’s inclination (orbital plane) in combination with the position of the Sun, Earth, Moon system.

LO1a:	Use a model to discover and explain the arrangement of the Sun, Earth, Moon system to generate eclipses.
LO1b:	Evaluate the credibility of arguments provided by advisory for the cause of solar and lunar eclipses based on ways of knowing.
LO1c:	Use a model to discover and explain the relationship between umbral diameter and likelihood of viewing an eclipse from Earth.
LO1d:	Use a model to investigate and explain the relationship of the Moon’s inclination and the pattern of observed solar eclipses over time.

PRACTICES:

1. Developing and Using Models
2. Analyzing and Interpreting Data
3. Constructing Explanations and Designing Solutions
4. Obtaining, Evaluating, and Communicating information

Scientific Knowledge is Based on Empirical Evidence

DISCIPLINARY CORE IDEAS:

1. ESS1.A: The Universe and Its Stars
2. ESS1.B: Earth and the Solar System

CROSSCUTTING CONCEPTS:

1. Patterns
2. Cause and Effect: Mechanism and Prediction
3. Scale, Proportion, and Quantity
4. Systems and System Models

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

Science is a Way of Knowing
3.0 Learning Outcomes, NRC Framework, NGSS, Common Core, & 21st Century Skills Connections

The connections diagram is used to organize the learning outcomes addressed in the lesson to establish where each will meet the Next Generation Science Standards, Common Core Standards, and the 21st Century Skills and visually determine where there are overlaps in these documents. See NGSS Alignment Document and Common Core State Standards Alignment Document for details on their specific alignments.

LO1a: Use a model to discover and explain the arrangement of the Sun, Earth, Moon system to generate eclipses.

LO1b: Evaluate the credibility of arguments provided by advisory for the cause of solar and lunar eclipses based on ways of knowing.

LO1c: Use a model to discover and explain the relationship between umbral diameter and likelihood of viewing an eclipse from Earth.

LO1d: Use a model to investigate and explain the relationship of the Moon’s inclination and the pattern of observed solar eclipses over time.

This material is based upon work supported by NASA under cooperative agreement No. NNX16AD79A. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. This lesson was prepared by Arizona State University’s Education Through eXploration (ETX) Center. Lesson formatting was adopted and adapted from Arizona State University’s Mars Education Program. The lesson and its’ associated materials may be photocopied and distributed freely for non-commercial purposes. Copyright 2016-2021.
4.0 Evaluation/Assessment

Use the (N) Kingdom in Peril Alignment Rubric as a formative and summative assessment, allowing students to improve their work and learn from mistakes during class, but also providing final assessment of the learning activities. The rubric evaluates the activities using the Next Generation Science Standards (NGSS).

5.0 References

Achieve, Inc. (2013). Next generation science standards. Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS.

(N) Teacher Resource. *Kingdom in Peril NGSS Alignment (1 of 3)*

You will know the level to which your students have achieved the **Learning Outcomes**, and thus the **Instructional Objective(s)**, by using the suggested **Rubrics** below.

Related Standard(s)

This lesson supports the preparation of students toward achieving Performance Expectations using the **Practices**, **Cross-Cutting Concepts** and **Disciplinary Core Ideas** defined below: (MS-ESS1.A), (MS-ESS1.B).

Next Generation Science Standards

<table>
<thead>
<tr>
<th>Instructional Objective</th>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Idea</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO1:</td>
<td>Constructing Explanations and Designing Solutions
Explain predictable eclipse patterns using a model to discover and demonstrate the evidence of phenomena at different scales such as the Moon’s inclination (orbital plane) in combination with the position of the Sun, Earth, Moon system.</td>
<td>ESS1.A: The Universe and Its Stars
Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)</td>
<td>Patterns
Patterns can be used to identify cause-and-effect relationships.</td>
</tr>
<tr>
<td></td>
<td>Developing and Using Models
Construct a scientific explanation using models or representations based on valid and reliable evidence obtained from sources (including the student’s own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.</td>
<td>ESS1.B: Earth and the Solar System
This model of the solar system can explain eclipses of the Sun and the Moon. (MS-ESS1-1)</td>
<td>Cause and Effect: Mechanism and Prediction
Cause and effect relationships may be used to predict phenomena in natural or designed systems.</td>
</tr>
<tr>
<td></td>
<td>Analyzing and Interpreting Data
Use and revise models to describe, test, and predict abstract phenomena and design systems</td>
<td></td>
<td>Scale, Proportion, and Quantity
Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. Phenomena that can be observed at one scale may not be observable at another scale.</td>
</tr>
</tbody>
</table>

This material is based upon work supported by NASA under cooperative agreement No. NNX16AD79A. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. This lesson was prepared by Arizona State University’s Education Through eXploration (ETX) Center. Lesson formatting was adopted and adapted from Arizona State University’s Mars Education Program. The lesson and its associated materials may be photocopied and distributed freely for non-commercial purposes. Copyright 2016-2021.

Last edited: June 20, 2019
| Analyze and interpret data to determine similarities and differences in findings. | are understandable through measurement and observation. Empirical evidence is needed to identify patterns. (Connect to High School Crosscutting Statements) |
Kingdom in Peril

Teacher Guide

(M) Teacher Resource. *Kingdom in Peril* NGSS Alignment (2 of 3)

Next Generation Science Standards

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Idea</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
</table>
| **LO1a:** Use a model to discover and explain the arrangement of the Sun, Earth, Moon system to generate eclipses | **Constructing Explanations and Designing Solutions**
Construct an explanation that includes qualitative or quantitative relationships between variable that predict(s) and/or describe(s) phenomena
Construct an explanation using models or representations.
Developing and Using Models
Use a model to predict and/or describe phenomena.
Analyzing and Interpreting Data
Analyze and interpret data to provide evidence for phenomena. | **ESS1.A: The Universe and Its Stars**
Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1) | **Patterns**
Patterns can be used to identify cause and effect relationships.
Empirical evidence is needed to identify patterns. (Connect to High School Crosscutting Statements)
Cause and Effect: Mechanism and Prediction:
Cause and effect relationships may be used to predict phenomena in natural or designed systems. |

| **LO1b:** Evaluate the credibility of arguments provided by advisory for the cause of solar and lunar | **Obtaining, Evaluating, and Communicating Information**
Gather, read, synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. | **ESS1.A: The Universe and Its Stars**
Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1) | **Cause and Effect: Mechanism and Prediction:**
Cause and effect relationships may be used to predict phenomena in natural or designed systems. |

This material is based upon work supported by NASA under cooperative agreement No. NNX16AD79A. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. This lesson was prepared by Arizona State University’s Education Through eXploration (ETX) Center. Lesson formatting was adopted and adapted from Arizona State University’s Mars Education Program. The lesson and its associated materials may be photocopied and distributed freely for non-commercial purposes. Copyright 2016-2021.

Last edited: June 20, 2019
<table>
<thead>
<tr>
<th>Scientific Investigations Use a Variety of Methods</th>
<th>ESS1.B: Earth and the Solar System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific values function as criteria in distinguishing between science and non-science</td>
<td>This model of the solar system can explain eclipses of the Sun and the Moon. Earth’s spin axis is fixed in direction over the short-term but tilted relative to its orbit around the Sun. The seasons are a result of that tilt and are caused by the differential intensity of Sunlight on different areas of Earth across the year. (MS-ESS1-1)</td>
</tr>
<tr>
<td>Scientific Knowledge is Based on Empirical Evidence</td>
<td></td>
</tr>
<tr>
<td>Science knowledge is based upon logical and conceptual connections between evidence and explanations.</td>
<td></td>
</tr>
</tbody>
</table>

ESS1.A: The Universe and Its Stars
Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)

ESS1.B: Earth and the Solar System

Scientific Knowledge Assumes an Order and Consistency in Natural Systems
Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

Science Addresses Questions About the Natural and Material World
Science limits its explanations to systems that lend themselves to observation and empirical evidence.

Science is a Way of Knowing
Science is a way of knowing used by many people, not just scientists.

Science knowledge has a history that includes the refinement of, and changes to, theories, ideas, and beliefs over time. *(Connection to High School Crosscutting Concepts)*

Developing and Using Models
Use a model to predict and/or describe phenomena.

Analyzing and Interpreting Data
Analyze and interpret data to provide evidence for phenomena.

Constructing Explanations and Designing Solutions
Construct an explanation that includes qualitative or quantitative relationships.

Patterns
Patterns can be used to identify cause and effect relationships.

Cause and Effect: Mechanism and Prediction:
Cause and effect relationships may be used to predict phenomena in natural or designed systems.

Scale, Proportion, and Quantity
Phenomena that can be observed at one
between variable that predict(s) and/or describe(s) phenomena
Construct an explanation using models or representations.

This model of the solar system can explain eclipses of the Sun and the Moon. (MS-ESS1-1)

scale may not be observable at another scale.

LO1d:
Use a model to investigate and explain the relationship of the Moon’s inclination and the pattern of observed solar eclipses over time.

Planning and Carrying Out Investigations
Collect data to serve as the basis for evidence to answer scientific questions.

Developing and Using Models
Use a model to predict and/or describe phenomena.

Analyzing and Interpreting Data
Analyze and interpret data to provide evidence for phenomena.

Constructing Explanations and Designing Solutions
Construct an explanation that includes qualitative or quantitative relationships between variable that predict(s) and/or describe(s) phenomena

Construct an explanation using models or representations.

ESS1.A: The Universe and Its Stars
Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)

ESS1.B: Earth and the Solar System
This model of the solar system can explain eclipses of the Sun and the Moon. (MS-ESS1-1)

Patterns
Patterns can be used to identify cause and effect relationships.

Cause and Effect: Mechanism and Prediction:
Cause and effect relationships may be used to predict phenomena in natural or designed systems.

Scale, Proportion, and Quantity
Phenomena that can be observed at one scale may not be observable at another scale.
<table>
<thead>
<tr>
<th>Activity</th>
<th>Phases of 5E Instructional Model</th>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Idea</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) An Ominous Event</td>
<td>Engage</td>
<td>Obtaining, Evaluating, and Communicating Information
Gather, read, synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.</td>
<td>ESS1.A: The Universe and Its Stars
Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)</td>
<td>Patterns
Empirical evidence is needed to identify patterns</td>
</tr>
<tr>
<td>Celestial Bodies</td>
<td>Explore</td>
<td>Planning and Carrying Out Investigations
Collect data to serve as the basis for evidence to answer scientific questions.</td>
<td>ESS1.B: Earth and the Solar System
This model of the solar system can explain eclipses of the Sun and the Moon. (MS-ESS1-1)</td>
<td>Cause and Effect: Mechanism and Prediction:
Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.</td>
</tr>
<tr>
<td>Red Moon Rebellion</td>
<td></td>
<td>Developing and Using Models
Use a model to predict and/or describe phenomena.</td>
<td></td>
<td>Scale, Proportion, and Quantity
Phenomena that can be observed at one scale may not be observable at another scale.</td>
</tr>
<tr>
<td>Darkest Day</td>
<td></td>
<td>Analyzing and Interpreting Data
Analyze and interpret data to provide evidence for phenomena.</td>
<td></td>
<td>Scientific Knowledge Assumes an Order and Consistency in Natural Systems
Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future.</td>
</tr>
<tr>
<td>the Sun-Earth-Moon System</td>
<td>Explain</td>
<td>Developing and Using Models</td>
<td>ESS1.A: The Universe and Its Stars</td>
<td>Patterns</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>--------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Recording Sheet</td>
<td></td>
<td>Use a model to predict and/or describe phenomena.</td>
<td>Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)</td>
<td>Empirical evidence is needed to identify patterns</td>
</tr>
<tr>
<td>(D) Solar and Lunar Eclipses</td>
<td></td>
<td>Obtaining, Evaluating, and Communicating Information</td>
<td></td>
<td>Cause and Effect: Mechanism and Prediction:</td>
</tr>
<tr>
<td>Recording Sheet</td>
<td></td>
<td>Gather, read, synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.</td>
<td></td>
<td>Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.</td>
</tr>
<tr>
<td>(E) Investigating Eclipses</td>
<td></td>
<td>Analyzing and Interpreting Data</td>
<td></td>
<td>Scale, Proportion, and Quantity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyze and interpret data to provide evidence for phenomena.</td>
<td></td>
<td>Phenomena that can be observed at one scale may not be observable at another scale.</td>
</tr>
</tbody>
</table>

(C) Selecting a Royal Advisor	**Explore**	**Engaging in Argument from Evidence**	**ESS1.A: The Universe and Its Stars**	**Scientific Knowledge Assumes an Order and Consistency in Natural Systems**
Recording Sheet		Use an oral and written argument supported by evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon	Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)	Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future.
		Obtaining, Evaluating, and Communicating Information		
		Gather, read, synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and		
		ESS1.B: Earth and the Solar System		
		This model of the solar system can explain eclipses		
(F) Confronting Flaws Recording Sheet	Explore Explain	Planning and Carrying Out Investigations	Collect data to serve as the basis for evidence to answer scientific questions.	
Developing and Using Models				
Use a model to predict and/or describe phenomena.				
Develop and/or revise a model to show the relationships among variables, including those that are not observable but predict observable phenomena.				
Analyzing and Interpreting Data				
Analyze and interpret data to provide evidence for phenomena.				
ESS1.A: The Universe and Its Stars				
Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)				
ESS1.B: Earth and the Solar System				
This model of the solar system can explain eclipses of the Sun and the Moon. (MS-ESS1-1)				
Patterns				
Empirical evidence is needed to identify patterns.
Cause and Effect: Mechanism and Prediction:
Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
Scientific Knowledge Assumes an Order and Consistency in Natural Systems
Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future.

This material is based upon work supported by NASA under cooperative agreement No. NNX16AD79A. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. This lesson was prepared by Arizona State University’s Education Through eXploration (ETX) Center. Lesson formatting was adopted and adapted from Arizona State University’s Mars Education Program. The lesson and its’ associated materials may be photocopied and distributed freely for non-commercial purposes. Copyright 2016-2021.

Last edited: June 20, 2019
| (G) Modeling Eclipses in Other Sun-Planet-Moon Systems | Elaborate | Developing and Using Models
Use a model to predict and/or describe phenomena.
Analyzing and Interpreting Data
Analyze data using tools, technologies, and/or models in order to make valid and reliable scientific claims. | ESS1.A: The Universe and Its Stars
Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)
ESS1.B: Earth and the Solar System
This model of the solar system can explain eclipses of the Sun and the Moon. (MS-ESS1-1) | Patterns
Empirical evidence is needed to identify patterns
Cause and Effect: Mechanism and Prediction:
Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
Scientific Knowledge Assumes an Order and Consistency in Natural Systems
Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. |
| (H) Explaining Earth’s Eclipse Patterns | Evaluate | Constructing Explanations and Designing Solutions
Construct a scientific explanation using models or representations based on valid and reliable evidence obtained from sources (including the student’s own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Obtaining, Evaluating, and Communicating Information
Communicate scientific and/or technical information (e.g. about a proposed object, tool, process, system) in writing and/or through oral presentations. | ESS1.A: The Universe and Its Stars
Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)
ESS1.B: Earth and the Solar System
This model of the solar system can explain eclipses of the Sun and the Moon. (MS-ESS1-1) | Patterns
Empirical evidence is needed to identify patterns
Cause and Effect: Mechanism and Prediction:
Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
Scientific knowledge Assumes an Order and Consistency in Natural Systems
Science Assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. |
(N) Teacher Resource. *Kingdom in Peril* NGSS Alignment Rubric (1 of 2)

Related Rubrics for the Assessment of Learning Outcomes Associated with the Above Standard(s):

Next Generation Science Standards Alignment (NGSS)

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>Expert</th>
<th>Proficient</th>
<th>Intermediate</th>
<th>Beginner</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO1a: Use a model to discover and explain the arrangement of the Sun, Earth, Moon system to generate eclipses</td>
<td>Accurately draws arrangement of the Sun, Earth, Moon system and fully describes the shadows related to their arrangement.</td>
<td>Accurately draws the arrangement of the Sun, Earth, Moon system and indicates the shadows related to their arrangement.</td>
<td>Draws the arrangement of the Sun, Earth, Moon system and states that shadows make eclipses.</td>
<td>Draws the arrangement of the Sun, Earth, Moon system.</td>
</tr>
<tr>
<td>LO1b: Evaluate the credibility of arguments provided by advisory for the cause of solar and lunar eclipses based on ways of knowing.</td>
<td>Accurately identifies the ways of knowing for advisory and articulates that science is a more credible way of knowing due to the use of evidence, logic and reasoning as opposed to arguments based on myths, spiritual or religious beliefs.</td>
<td>Accurately identifies the ways of knowing for advisory and articulates that science is a more credible way of knowing due to the use of evidence.</td>
<td>Identifies the ways of knowing for advisory and states that science is a more credible way of knowing.</td>
<td>Identifies the ways of knowing for advisory.</td>
</tr>
<tr>
<td>LO1c: Use a model to discover and explain the relationship between umbral shadow diameter and likelihood of viewing an eclipse from Earth.</td>
<td>Accurately collects relevant data and fully explains the difference between the diameter of the umbral shadow and the likelihood of observing a solar versus a lunar eclipse, referencing the duration of the eclipse and the portion of Earth that is able to see the eclipse.</td>
<td>Accurately collects relevant data and fully explains the difference between the diameter of the umbral shadow and the likelihood of observing a solar versus a lunar eclipse, referencing the duration of the eclipse or the portion of Earth able to see the eclipse.</td>
<td>Collects data and states that lunar eclipses are seen by about half the Earth and solar eclipses are seen by much less than half the Earth.</td>
<td>Collects data and states that blood Moons are caused by Earth’s shadow.</td>
</tr>
<tr>
<td>LO1d: Use a model to investigate and explain the relationship of the Moon’s inclination and the pattern of observed solar eclipses over time.</td>
<td>Accurately collects data from each adjustment to the model and fully explains that the observed pattern of eclipses is attained when the Moon’s orbit is tilted 5° with respect to Earth’s orbit. Explanation includes discussion of the model’s problem of predicting eclipses more frequently than actually observed.</td>
<td>Accurately collects data from each adjustment to the model and explains that the observed pattern of eclipses is only attained when the Moon’s orbit is tilted 5° with respect to Earth’s orbit.</td>
<td>Accurately collects data and states that 5° tilt of the Moon’s orbit properly predicts eclipses.</td>
<td>Collects data and states that 5° tilt is correct.</td>
</tr>
</tbody>
</table>

This material is based upon work supported by NASA under cooperative agreement No. NNX16AD79A. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. This lesson was prepared by Arizona State University’s Education Through eXploration (ETX) Center. Lesson formatting was adopted and adapted from Arizona State University’s Mars Education Program. The lesson and its associated materials may be photocopied and distributed freely for non-commercial purposes. Copyright 2016-2021.
Related Rubrics for the Assessment of the Instructional Objective Associated with the Above Standard(s):

Next Generation Science Standards Alignment (NGSS)

<table>
<thead>
<tr>
<th>Instructional Outcome</th>
<th>Expert</th>
<th>Proficient</th>
<th>Intermediate</th>
<th>Beginner</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO1: Explain predictable eclipse patterns using a model to discover and demonstrate the evidence of phenomena at different scales such as the Moon’s inclination (orbital plane) in combination with the position of the Sun, Earth, Moon system.</td>
<td>Provides detailed, accurate diagrams of the Sun, Earth, Moon system arrangement with the shadows in lunar and solar eclipses including Moon’s inclination and all appropriate labels. Fully explains the patterns related to eclipses including references to frequency due to inclination, the positioning of the Sun, Earth, Moon system, and the relationship between the size of the shadow observed on Earth and the size of the body casting the shadow, using appropriate vocabulary, data from collection, and detailed observations.</td>
<td>Provides accurate, diagrams of the arrangement of the Sun, Earth, Moon system in lunar and solar eclipses with most appropriate labels. Explains the patterns related to eclipses including references to frequency due to inclination, the positioning of the Sun, Earth, Moon system, and the relationship between the size of the shadow observed on Earth and the size of the body casting the shadow, using appropriate vocabulary, data from collection, and observations.</td>
<td>Provides accurate diagrams of the arrangement of the Sun, Earth, Moon system in lunar and solar eclipses with some labels. Accurately explains the patterns related to eclipses including references to the positioning of the Sun, Earth, Moon system and the size of the shadow cast upon Earth.</td>
<td>Provides diagrams of the arrangement of the Sun, Earth, Moon system in lunar or solar eclipses. States the arrangement that produces solar and lunar eclipses.</td>
</tr>
</tbody>
</table>